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Abstract
We study the heat trace asymptotics defined by a time-dependent family of
operators of Laplace type which naturally appears for time-dependent metrics.
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1. Introduction

Let M be an m-dimensional compact Riemannian manifold with smooth boundary, let V be a
smooth vector bundle over M , and let D : C∞(V ) → C∞(V ) be an operator of Laplace type
whose coefficients are independent of the parameter t ; such an operator is said to be static.
There is a canonical connection ∇ on V and a canonical endomorphism E of V so

D = −{Tr(∇2) + E}. (1.1a)

Let x = (x1, . . . , xm) be a system of local coordinates onM . We adopt the Einstein convention
and sum over repeated indices. Fix a local frame for V and expand:

ds2
M = gµν dxµ ◦ dxν and D = −(gµν∂µ∂ν + Aµ∂µ + B)

where A and B are local sections of TM ⊗ End(V ) and End(V ). Let IV be the identity map
on V . The connection 1-form ω of ∇ and the endomorphism E appearing in equation (1.1a)
are given by

ωδ = 1
2gνδ(A

ν + gµσ�µσ
νIV )

E = B − gνµ(∂νωµ + ωνωµ − ωσ�νµ
σ )

(1.1b)

see [4] for details. Let ‘;’ denote multiple covariant differentiation; we use the Levi-Civita
connection onM and the connection of equation (1.1b) determined byD to differentiate tensors
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of all types. If D is a time-dependent family of operators of Laplace type, then we expand D
in a Taylor series expansion in t to write D invariantly in the form

Du := Du +
∑
r>0

t r{Gr,ij u;ij + Fr,iu;i + Eru}. (1.1c)

This setting appears, for example, when defining an adiabatic vacuum in quantum field theory
in curved spacetime [1]. If the spacetime is slowly varying, then the time-dependent metric
describing the cosmological evolution can be expanded in a Taylor series with respect to t .
The index r in this situation is then related to the adiabatic order. However, a direct application
of the following results to quantum field theories in the way one is used to from the static
setting is not possible. A more natural physical framework of this investigation is instead
non-relativistic quantum physics with a time-dependent Hamiltonian and the classical physics
of heat propagation.

Near the boundary, let indices a, b, . . . range from 1 through m − 1 and index a local
orthonormal frame for the boundary; let em denote the inward unit normal. We assume given
a decomposition of the boundary ∂M = CN �̇ CD as the disjoint union of closed sets: we
permit CN or CD to be empty. Let

Bu := u|CD ⊕ (u;m + Su + t (Tau;a + S1u))|CN (1.1d)

define the boundary conditions; we can treat both Robin and Dirichlet boundary conditions
with this formalism. In the following we shall let B0 be the static (i.e. time-independent)
part of the boundary condition; B0u := u|CD ⊕ (u;m + Su)|CN . The reason for including a
time dependence in the boundary condition comes, for example, from considerations of the
dynamical Casimir effect; it takes the form given in (1.1d) for slowly moving boundaries. Here
we included only linear powers of t because higher orders do not enter into the asymptotic
terms we are going to calculate. Note that by multiplying B by (1 + T m)−1, we can take
T m = 0.

If φ is the initial temperature distribution, the subsequent temperature distribution uφ(t, x)
is determined by the equations

(∂t + D)uφ(t, x) = 0 Bu = 0 and uφ(0, x) = φ. (1.1e)

Let K : φ → uφ be the fundamental solution of the heat equation. If D and B are static, then
K = e−tDB . Let νM be the Riemannian measure on M . There exists a smooth endomorphism-
valued kernel K(t, x, x̄,D,B) : Vx̄ → Vx so

uφ(t, x) = (Kφ)(t, x) =
∫
M

K(t, x, x̄,D,B)φ(x̄) dν̄M.

For fixed t , the operator K(t) : φ → φ(t, ·) is of trace class. We let

a(f,D,B)(t) := TrL2(fK(t)) =
∫
M

f (x)TrVx
(K(t, x, x,D,B)) dνM. (1.1f)

The function f ∈ C∞(M) is introduced as a localizing or smearing function. As t ↓ 0, one
can extend the analysis of [6] from the static setting to show that there is a complete asymptotic
expansion of the form

a(f,D,B)(t) ∼
∑
n�0

an(f,D,B) t (n−m)/2. (1.1g)

The asymptotic coefficients an(f,D,B) form the focus of our study. We may decompose an
into an interior and a boundary contribution:

an(f,D,B) = aMn (f,D) + a∂Mn (f,D,B).
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The interior invariants vanish if n is odd and do not depend on the boundary condition; the
boundary invariants are generically non-zero for all n. Let Nµ(f ) denote the µth covariant
derivative of the smearing function f with respect to em. There exist locally computable
invariants aMn (x,D) and a∂Mn,µ(y,D,B) defined for interior points x ∈ M and boundary points
y ∈ ∂M so that

aMn (f,D) =
∫
M

f (x)aMn (x,D) dνM

a∂Mn (f,D,B) =
∑
µ

∫
∂M

Nµ(f )a∂Mn,µ(y,D,B) dν∂M.
(1.1h)

If D and B are static, then these are the heat trace asymptotics which have been studied
in many contexts previously; a(1,D,B) = TrL2 e−tDB . Let Rijkl be the components of the
curvature tensor defined by the Levi-Civita connection and let .ij be the components of the
curvature endomorphism defined by the auxiliary connection ∇ on V . We do not introduce
explicit bundle indices for .ij and E. Let Laa be the second fundamental form. Let ‘:’ denote
multiple covariant differentiation with respect to the Levi-Civita connection of the boundary
and the connection defined by D. We refer to [2] and [4] for the proof of the following result
for static D; see also related work [3, 7–9].

Theorem 1.1.

(a) aM0 (f,D) = (4π)−m/2
∫
M

f Tr(IV ) dνM

(b) aM2 (f,D) = (4π)−m/2 1
6

∫
M

f Tr(RijjiIV + 6E) dνM

(c)

aM4 (f,D) = (4π)−m/2 1
360

∫
M

f Tr{60E;kk + 60RijjiE + 180E2 + 30.ij.ij

+(12Rijji;kk + 5RijjiRkllk − 2RijkiRljkl + 2RijklRijkl)IV } dνM

(d) a∂M0 (f,D,B) = 0
(e)

a∂M1 (f,D,B) = −(4π)(1−m)/2 1
4

∫
CD

f Tr(IV ) dν∂M + (4π)(1−m)/2 1
4

∫
CN

f Tr(IV ) dν∂M

(f)

a∂M2 (f,D,B) = (4π)−m/2 1
6

∫
CD

Tr{2fLaaIV − 3f;mIV } dν∂M

+(4π)−m/2 1
6

∫
CN

Tr{f (2LaaIV + 12S) + 3f;mIV } dν∂M

(g)

a∂M3 (f,D,B) = −(4π)(1−m)/2 1
384

∫
CD

Tr{96fE + f (16Rijji − 8Ramma

+7LaaLbb − 10LabLab)IV − 30f;mLaaIV + 24f;mmIV } dν∂M

+(4π)(1−m)/2 1
384

∫
CN

Tr(96fE + f (16Rijji − 8Ramma

+13LaaLbb + 2LabLab)IV + f (96SLaa + 192S2)

+f;m(6LaaIV + 96S) + 24f;mmIV } dν∂M
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(h)

a∂M4 (f,D,B) = (4π)−m/2 1
360

∫
CD

Tr{f (−120E;m + 120ELaa)

+f (−18Rijji;m + 20RijjiLaa + 4RamamLbb − 12RambmLab + 4RabcbLac

+24Laa:bb + 40
21LaaLbbLcc − 88

7 LabLabLcc + 320
21 LabLbcLac)IV

−180f;mE + f;m(−30Rijji − 180
7 LaaLbb + 60

7 LabLab)IV + 24f;mmLaaIV

−30f;iimIV } dν∂M

+(4π)−m/2 1
360

∫
CN

Tr{f (240E;m + 120ELaa) + f (42Rijji;m + 24Laa:bb

+20RijjiLaa + 4RamamLbb − 12RambmLab + 4RabcbLac + 40
3 LaaLbbLcc

+8LabLabLcc + 32
3 LabLbcLac)IV + f (720SE + 120SRijji + 144SLaaLbb

+48SLabLab + 480S2Laa + 480S3 + 120S:aa) + f;m(180E + 72SLaa

+240S2) + f;m(30Rijji + 12LaaLbb + 12LabLab)IV + 120f;mmS

+24f;mmLaaIV + 30f;iimIV } dν∂M.

The main result of this paper is the following result which extends theorem 1.1 to the
time-dependent setting.

Theorem 1.2.

(a) aM0 (f,D) = aM0 (f,D)

(b) aM2 (f,D) = aM2 (f,D) + (4π)−m/2 1
6

∫
M

f Tr( 3
2G1,ii ) dνM

(c)

aM4 (f,D) = aM4 (f,D) + (4π)−m/2 1
360

∫
M

f Tr( 45
4 G1,iiG1,jj + 45

2 G1,ijG1,ij

+60G2,ii − 180E1 + 15G1,iiRjkkj − 30G1,ijRikkj + 90G1,iiE + 60F1,i;i

+15G1,ii;jj − 30G1,ij ;ij ) dνM

(d) a∂Mn (f,D,B) = a∂Mn (f,D,B0) for n � 2
(e)

a∂M3 (f,D,B) = a∂M3 (f,D,B0) + (4π)(1−m)/2 1
384

∫
CD

f Tr(−24G1,aa) dν∂M

+(4π)(1−m)/2 1
384

∫
CN

f Tr(24G1,aa) dν∂M

(f)

a∂M4 (f,D,B) = a∂M4 (f,D,B0) + (4π)−m/2 1
360

∫
CD

Tr{f (30G1,aaLbb

−60G1,mmLbb + 30G1,abLab + 30G1,mm;m − 30G1,aa;m

+0G1,am;a − 30F1,m) + f;m(−45G1,aa + 45G1,mm)} dν∂M
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+(4π)−m/2 1
360

∫
CN

Tr{f (30G1,aaLbb + 120G1,mmLbb − 150G1,abLab

−60G1,mm;m + 60G1,aa;m + 0G1,am;a + 150F1,m + 180SG1,aa

−180SG1,mm + 360S1 + 0Ta:a) + f;m(45G1,aa − 45G1,mm)} dν∂M.

Here is a brief outline of this paper. In section 2, we use invariance theory and dimensional
analysis to study the general form of the invariants an(f,D,B). We shall use B− for Dirichlet
and B+ for Robin boundary conditions. We shall show, for example, that there exist constants
c0 and e±

1 such that

aM2 (f,D) = aM2 (f,D) + (4π)−m/2 1
6

∫
M

f Tr(c0G1,ii ) dνM

a∂M3 (f,D,B) = a∂M3 (f,D,B0) + (4π)−(m−1)/2 1
384

∫
CD

f Tr(e−
1 G1,aa) dν∂M

+(4π)−(m−1)/2 1
384

∫
CN

f Tr(e+
1G1,aa) dν∂M.

We refer to lemma 2.1 for further details. The interior invariants will be described by
constants {ci}10

i=0, the boundary invariants for Neumann boundary conditions will be described
by constants {e+

i }15
i=1, and the boundary invariants for Dirichlet boundary conditions will be

described by constants {e−
i }11

i=1. We use the localizing function f to decouple the interior
and the boundary integrals; with the exception of lemma 2.3, there is no interaction between
the unknown constants {ci}, {e−

j } and {e+
k }. A priori, those constants could depend on the

dimension. In lemma 2.2, we will use product formulae to dimension shift and show that
the constants are dimension free. We complete the proof of theorem 1.2 by evaluating these
unknown constants; the values we shall derive are summarized in table 1.

We use various functorial properties to derive relations among these constants. For
example, in lemma 2.3, we use the product formulae of lemma 2.2 to show that c5 = 10c0. The
functorial properties that these time-dependent invariants satisfy and which are discussed in
sections 3–6 are new and have not been used previously in other calculations of the heat trace
asymptotics. Thus we believe they are of interest in their own right. It is one of the features of
the functorial method that one has to work in great generality even if one is only interested in
special cases. We found it necessary, for example, to consider the very general time-dependent
boundary conditions of equation (1.1d) to ensure that the class of boundary conditions was
invariant under the gauge and coordinate transformations employed in sections 4 and 5. We
work with scalar operators as the (possible) non-commutativity of the endomorphisms in the
vector-valued case plays no role in the evaluation of an for n � 4.

We summarize the five functorial properties we shall use as follows. In section 2, we
consider a product manifold M = M1 ×M2 where ∂M2 is empty, and an operator of the form
D = D1 ⊗ 1 + 1 ⊗ D2. In lemma 2.3, we show that

an(f1f2,D,B) =
∑

p+q=n

ap(f1,D1,B) aq(f2,D2).

In section 3, we rescale the time parameter t . Let D and B be static operators. Let
D := (1 + 2αt + 3βt2)D. In lemma 3.1, we show that

a2(f,D,B) = a2(f,D,B) − m

2
αa0(f,D,B)

a3(f,D,B) = a3(f,D,B) − m − 1

2
αa1(f,D,B)

a4(f,D,B) = a4(f,D,B) − m − 2

2
αa2(f,D,B) +

(
m(m + 2)

8
α2 − m

2
β

)
a0(f,D,B).
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In section 4, we make a time-dependent gauge transformation. We assume D and B are static.
Let D5 := e−t56Det56 + 56. We also gauge transform the boundary condition B to define
B5. In lemma 4.1, we show that

∂

∂5
{an(f,D5,B5)}|5=0 = −an−2(f6,D,B).

In section 5, we make a time-dependent coordinate transformation. Let 7 be the scalar
Laplacian and let B be static. Let 85 : (t, x1, x2) → (t, x1 + t59, x2), where 5 is an auxiliary
parameter. We set D5 := 8∗

5(∂t + 7) − ∂t and B5 := 8∗
5(B). Let dνM := g dx1 dx2. In

lemma 5.1, we show that

∂

∂5
{an(f,D5,B5)}|5=0 = − 1

2an−2(g
−1∂1(gf9),7,B).

In section 6, we assume given a second-order operatorQwhich commutes with a static operator
D of Laplace type. We define D5 := D + 5Q and define a suitable boundary condition B5.
We also define D5 := D + 2t5Q and show

∂

∂5
{an(f,D5,B)}|5=0 = ∂

∂5
{an−2(f,D5,B5)}|5=0.

In each section, we use the relevant functorial properties to derive relations among the
unknown coefficients; these relations are contained in lemmas 2.3, 3.2, 4.2 and 5.2. These
relations suffice to determine the unknown coefficients and thereby complete the proof of
theorem 1.2. As the computations are somewhat long and technical, we have derived more
equations than are needed as a consistency check; this is typical in such computations.

2. Invariance theory, dimensional analysis and dimension shifting

We begin the proof of theorem 1.2 by establishing the general form of the invariants aMn and
a∂Mn for n � 4. Let (D,B0) be the static operator and boundary condition determined by
(D,B).
Lemma 2.1. There exist constants so that

(a) aM0 (f,D) = aM0 (f,D) and a∂Mi (f,D,B) = a∂Mi (f,D,B0) for i � 2

(b) aM2 (f,D) = aM2 (f,D) + (4π)−m/2 1
6

∫
M

f Tr{c0G1,ii} dνM

(c)

aM4 (f,D) = aM4 (f,D) + (4π)−m/2 1
360

∫
M

f Tr{c1G1,iiG1,jj + c2G1,ijG1,ij

+c3G2,ii + c4E1 + c5G1,iiRjkkj + c6G1,ijRikkj + c7G1,iiE + c8F1,i;i

+c9G1,ii;jj + c10G1,ij ;ij } dνM

(d)

a∂M3 (f,D,B) = a∂M3 (f,D,B0) + (4π)(1−m)/2 1
384

∫
CD

f Tr(e−
1 G1,aa + e−

2 G1,mm) dν∂M

+(4π)(1−m)/2 1
384

∫
CN

f Tr(e+
1G1,aa + e+

2G1,mm) dν∂M
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(e)

a∂M4 (f,D,B) = a4(f,D,B0) + (4π)−m/2 1
360

∫
CD

Tr{f (e−
3 G1,aaLbb

+e−
4 G1,mmLbb + e−

5 G1,abLab + e−
6 G1,mm;m + e−

7 G1,aa;m

+e−
8 G1,am;a + e−

9 F1,m) + f;m(e−
10G1,aa + e−

11G1,mm)} dν∂M

+(4π)−m/2 1
360

∫
CN

Tr{f (e+
3G1,aaLbb + e+

4G1,mmLbb + e+
5G1,abLab

+e+
6G1,mm;m + e+

7G1,aa;m + e+
8G1,am;a + e+

9F1,m + e+
12SG1,aa

+e+
13SG1,mm + e+

14S1 + e+
15Ta:a) + f;m(e+

10G1,aa + e+
11G1,mm)} dν∂M.

Proof. We use dimensional analysis. This involves studying the behaviour of these invariants
under rescaling and is described in [4] in the static setting. We assign weight 2 to R, .,
E and Ta and weight 3 to S1. We assign weight 1 to S and Lab. We increase the weight
by 1 for each explicit covariant derivative which appears. Thus, for example, the terms E;kk ,
.ij.ij andRijklRijkl are all of degree 4. The integrands appearing in aMn and a∂Mn are weighted
homogeneous of degree n and n−1. The structure groups are O(m) and O(m−1), respectively.
Weyl’s theorem [10] shows that all orthogonal invariants are given by contractions of indices.
The assertions of the lemma now follow by writing down a spanning set for the space of
invariants. We note that since G1,ij = G1,j i , the invariant G1,ij.ij does not appear. �

We will complete the proof of theorem 1.2 by evaluating the unknown coefficients of
lemma 2.1. The remainder of this paper is devoted to deriving the values in table 1.

Table 1. Values of the constants ci and e±
j .

c0 = 3
2 c1 = 45

4 c2 = 45
2 c3 = 60 c4 = −180 c5 = 15

c6 = −30 c7 = 90 c8 = 60 c9 = 15 c10 = −30

e−
1 = −24 e−

2 = 0 e−
3 = 30 e−

4 = −60 e−
5 = 30 e−

6 = 30

e−
7 = −30 e−

8 = 0 e−
9 = −30 e−

10 = −45 e−
11 = 45

e+
1 = 24 e+

2 = 0 e+
3 = 30 e+

4 = 120 e+
5 = −150 e+

6 = −60

e+
7 = 60 e+

8 = 0 e+
9 = 150 e+

10 = 45 e+
11 = −45 e+

12 = 180

e+
13 = −180 e+

14 = 360 e+
15 = 0

The (possible) non-commutativity of the endomorphisms in the vector-valued case plays
no role in the invariants of lemma 2.1. We therefore suppose V to be the trivial bundle
henceforth and omit the trace from our formulae to simplify the notation as we will be dealing
with scalar operators on C∞(M). We also set e−

i = 0 for i � 12 to have a common formalism;
these constants describe invariants which involve S, S1 and Ta and which are therefore not
relevant for Dirichlet boundary conditions.

A priori, the constants ci and e±
i might depend upon the dimension. Fortunately, this turns

out not to be the case; the dependence upon the dimension is contained in the multiplicative
normalizing factors of (4π)∗. Let Di be smooth time-dependent families of operators of
Laplace type over manifoldsMi for i = 1, 2. We supposeM2 to be closed. LetM := M1×M2,
let D := D1 + D2, and let the boundary condition for M be induced from the corresponding
boundary condition for M1.
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Lemma 2.2. Adopt the notation established above.

(a) aMn (f1f2,D) =
∑

p+q=n

aM1
p (f1,D1) a

M2
q (f2,D2)

(b) a∂Mn (f1f2,D,B) =
∑

p+q=n

a∂M1
p (f1,D1,B)aM2

q (f2,D2)

(c) The constants of lemma 2.1 do not depend upon the dimension m.

Proof. We use equation (1.1e) to check that uφ1·φ2 = uφ1 · uφ2 . This shows the kernel function
on M is the product of the corresponding kernel functions on M1 and on M2; assertions (a) and
(b) now follow. Let (M,DM,B) be given. Let S1 be the unit circle with the usual flat metric and
usual periodic parameter θ . Let DS = −∂2

θ on the trivial line bundle. Let DM×S1 = DM +DS .
Then ap(θ,DS) = 0 forp > 0 and a0(θ,DS) = (4π)−1/2 (see [4] for details). Thusp = n and
q = 0 in assertions (a) and (b) so an(f1,DM×S1) = (4π)−1/2an(f1,DM,B). It now follows
that ci(m + 1) = ci(m) and e±

i (m + 1) = e±
i (m). �

We use the product formulae of lemma 2.2 to prove the following lemma:

Lemma 2.3. We have c1 = 5c2
0, c5 = 10c0, c7 = 60c0, e−

1 = −16c0, e−
3 = 20c0, e−

10 = −30c0,
e+

1 = 16c0, e+
3 = 20c0, e+

10 = 30c0 and e+
12 = 120c0.

Proof. We apply lemma 2.2 and study the cross terms arising in ap+q(f1f2,D,B) from
ap(f1,D1,B1)aq(f2,D2). We let indices r and s index M1 and indices u and v index M2. We
use theorem 1.1 and equate coefficients of suitable expressions to derive the following systems
of equations shown in table 2 from which the lemma will follow. �

Table 2. Systems of equations derived by lemma 2.2.

2c1 = 360( 1
6 c0)(

1
6 c0) [f1f2G1,rrG1,uu] c5 = 360( 1

6 )(
1
6 c0) [f1f2RrssrG1,uu]

c7 = 360( 1
6 c0) [f1f2E1G1,uu] e±

1 = 384(± 1
4 )(

1
6 c0) [f1f2G1,uu]

e±
3 = 360( 1

3 )(
1
6 c0) [f1f2LrrG1,uu] e±

10 = 360(± 1
2 )(

1
6 c0) [f1;mf2G1,uu]

e+
12 = 360(2)( 1

6 c0) [f SG1,uu]

3. Rescaling the time parameter

Let D and B be static. Let α, β ∈ R. We define a time-dependent family of operators of
Laplace type by setting D := (1 + 2αt + 3βt2)D.

Lemma 3.1.

(a) a2(f,D,B) = a2(f,D,B) − m

2
αa0(f,D,B)

(b) a3(f,D,B) = a3(f,D,B) − m − 1

2
αa1(f,D,B)

(c) a4(f,D,B) = a4(f,D,B) − m − 2

2
αa2(f,D,B) +

(
m(m + 2)

8
α2 − m

2
β

)
a0(f,D,B).
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Proof. Let u0 = e−tDBφ and let u(t, x) := u0(t + αt2 + βt3, x). Then

Du(t, x) = (1 + 2αt + 3βt2)(Du0)(t + αt2 + βt3, x)

∂tu(t, x) = (1 + 2αt + 3βt2)(∂tu0)(t + αt2 + βt3, x).

This shows that (∂t + D)u = 0. Since u(0, x) = u0(0, x) = φ(x) and Bu = 0, the relations of
equation (1.1e) are satisfied so that

K(t, x, x̄,D,B) = K(t + αt2 + βt3, x, x̄,D,B).

The lemma will then follow from the expansions:

a(f,D,B)(t) ∼
∑
n

t−m/2(1 + αt + βt2)(n−m)/2an(f,D,B)tn/2

(1 + αt + βt2)j ∼ 1 + αjt +

(
j (j − 1)

2
α2 + jβ

)
t2 + O(t3). �

We apply theorem 1.1 and lemma 3.1 to derive the following relationships:

Lemma 3.2.

(a) c0 = 3
2 , c1 = 45

4 , c2 = 45
2 , c3 = 60, c4 = −180, c5 = 15, c6 = −30, c7 = 90

(b) e±
1 = ±24, e±

2 = 0, e±
3 = 30, e±

4 + e±
5 = −30, e±

10 = ±45, e±
11 = ∓45

(c) e+
12 = 180, e+

13 = −180.

Proof. We have G1,ij = −2αgij , F1,i = 0, G2,ij = −3βgij and E1 = −2αE. Thus G1,ii;jj = 0,
G1,ij ;ij = 0 and F1,i;i = 0. We equate coefficients of suitable expressions in lemma 3.1 to
derive the systems of equations shown in table 3 from which the lemma will follow. Note that
since m is arbitrary, equations involving this parameter can give rise to more than one relation.

�

Table 3. Systems of equations derived by lemma 3.1.

−2mc0 = −6m
2 [αf ] in aM2

4(m2c1 + mc2) = 360m(m+2)
8 [α2f ] in aM4

−3mc3 = −360m
2 [βf ] in aM4

−2(c4 + mc7) = −360m−2
12 6 [αfE] in aM4

−2(mc5 + c6) = −360m−2
12 [αfRijji ] in aM4

−2{(m − 1)e±
1 + e±

2 } = −384( m−1
2 )(± 1

4 ) [αf ] in a∂M3

−2{(m − 1)e±
3 + e±

4 + e±
5 } = −360( m−2

2 )( 1
3 ) [αfLaa] in a∂M4

−2{(m − 1)e±
10 + e±

11} = −360( m−2
2 )(± 1

2 ) [αf;m] in a∂M4

−2{(m − 1)e+
12 + e+

13} = −360( m−2
2 )(2). [αf S] in a∂M4
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4. Time-dependent gauge transformations

Let D5 := e−t56Det56 + 56. If Bu = u;m + Su is the Robin boundary operator, we gauge
transform the boundary condition to define B5 := ∇m + S + tS1 with S1 = 56;m; the Dirichlet
boundary operator is unchanged.

Lemma 4.1. We have ∂
∂5

{an(f,D5,B5)}|5=0 = −an−2(f6,D,B).

Proof. Let u0 := e−tDBφ and let u := e−t56u0. We show u satisfies the relations of (1.1e) by
computing

∂tu(t, x) = e−t56(∂t − 56)u0 D5u(t, x) = e−t56(D + 56)u0

(∂t + D5)u = e−t56(∂t + D)u0 = 0 and u(0, x) = u0(x) = φ(x).

Dirichlet boundary conditions are preserved. With Robin boundary conditions,

u;m + Su + tS1u = e−t56(u0;m − t56;mu0 + Su0 + t56;mu0) = 0.

Thus K(·,D5,B5) = e−t56K(·,D,B). The lemma now follows. �

We use lemma 4.1 to obtain some additional relationships:

Lemma 4.2. We have c8 = 60, e−
9 = −30 and e+

14 − 2e+
9 = 60.

Proof. Let 6 vanish on ∂M . We apply lemma 4.1 with M = [0, 1] and D = −∂2
θ . We work

modulo terms which are O(52) and compute

D5 ≡ D + 56 − 2t56;θ ∂θ − t56;θθ

B+
5 ≡ ∇m + S + t56;m S1 ≡ 56;θ

E ≡ −56 F1,m ≡ −256;θ E1 ≡ −56;θθ .

We study ∂
∂5

{aM4 }|5=0 and ∂
∂5

{a∂M4 }|5=0 as shown in table 4.
Here the notation (−120−, 240+) indicates that the coefficient for Dirichlet B− and

Neumann B+ boundary conditions is −120 and 240. As −aM2 (f6,D) = 0 and
−a∂M2 (f6,D,B±) = − 1

360 (4π)
−1/2

∫
∂M

±180(f6);m, we use lemma 4.1 to derive the
following equations from which the lemma will follow:

0 = −60 + 180 − 2c8

−180 = −2e+
9 + e+

14 − 240

180 = 120 − 2e−
9 . �

Table 4. Variational formulae needed in the proof of lemma 4.2.

∂
∂5

{60E;ii}|5=0 ≡ −606;θθ ∂
∂5

{−180E1}|5=0 ≡ 1806;θθ
∂
∂5

{c8F1,i;i}|5=0 ≡ −2c86;θθ ∂
∂5

{e+
14S1}|5=0 ≡ e+

146;θ
∂
∂5

{(−120−, 240+)E;m}|5=0 ≡ (120−,−240+)6;θ ∂
∂5

{e±
9 F1,m}|5=0 ≡ −2e±

9 6;θ
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5. Time-dependent coordinate transformations

In this section, we study time-dependent coordinate transformations and make a coordinate
transformation that mixes up the spatial and the temporal coordinates. This technique was
also used in [5] to study the heat content asymptotics. We work in a very specific context
but note that the lemma holds true with much greater generality. Let M := S1 × [0, 1] with
ds2 = e2ψ1 dx2

1 + e2ψ2 dx2
2 . Let dνM := g dx1 dx2. Let 9 ∈ C∞(M) have compact support

near some pointP ∈ M . Let7 be the scalar Laplacian and let B be a static boundary condition.
Define

85(t, x1, x2) := (t, x1 + t59, x2)

D5 := 8∗
5(∂t + 7) − ∂t and B5 := 8∗

5(B).
Lemma 5.1. We have ∂

∂5
an(f,D5,B5)|5=0 = − 1

2an−2(g
−1∂1(gf9),7,B).

Proof. Let u(t, x1, x2) := {8∗
5(e

−t7Bφ)}(x1, x2). By naturality, u satisfies the relations of
(1.1e). As the static operator determined by D5 is 7+ lower-order terms, dνM is independent
of 5. Thus

K(t, x1, x2, x̄1, x̄2,D5,B5) = K(t, x1 + 5t9(x1, x2), x2, x̄1, x̄2,7,B).
We set x1 = x̄1 and x2 = x̄2. We work modulo terms which are O(52) and expand in a Taylor
series to compute

a(f,D5,B5)(t) =
∫
M

f (x1, x2)K(t, x1, x2, x1, x2,D5,B5) dνM

=
∫
M

f (x1, x2)K(t, x1 + 5t9, x2, x1, x2,7,B)g dx1 dx2

≡
∫
M

{f (x1, x2)K(t, x1, x2, x1, x2,7,B)

+t5f9∂1K(t, x1, x2, y1, x2,7,B)|x1=y1}g dx1 dx2.

As 7B is self-adjoint, the heat kernel is symmetric. Thus we have

a(f,D5,B5)(t) ≡
∫
M

{f (x1, x2)K(t, x1, x2, x1, x2,7,B)

+ 1
2 t5f9∂1K(t, x1, x2, x1, x2,7,B)}g dx1 dx2

≡
∫
M

{f (x1, x2)K(t, x1, x2, x1, x2,7,B)

− 1
2 t5g

−1∂1(gf9)K(t, x1, x2, x1, x2,7,B)} dνM

≡ a(f,7,B)(t) − 1
2 t5a(g

−1∂1(gf9),7,B)(t).
We use lemma 5.1 to complete the proof of theorem 1.2 by completing the calculation of the
coefficients ci and e±

i . �

Lemma 5.2.

(a) c9 = 15 and c10 = −30
(b) e−

4 = −60, e−
5 = 30, e−

6 = 30, e−
7 = −30 and e−

8 = 0
(c) e+

4 = 120, e+
5 = −150, e+

6 = −60, e+
7 = 60, e+

8 = 0, e+
9 = 150, e+

14 = 360 and e+
15 = 0.
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Proof. We introduce an auxiliary parameter ε and work modulo terms which are O(ε2)+O(52).
Let

ds2 := e2εψ1 dx2
1 + e2εψ2 dx2

2 .

The Laplacian 7 = −g−1∂igg
ij ∂j can then be expressed in the form

7 ≡ −{e−2εψ1∂2
1 + e−2εψ2∂2

2 + ε(ψ2/1 − ψ1/1)∂1 + ε(ψ1/2 − ψ2/2)∂2}.
Let 85(t, x1, x2) = (t, x1 + 5t9, x2). Let 9/i = ∂i9, etc. As 85 is a diffeomorphism, we
can pull back both differential forms and differential operators. We compute

8∗
5(∂1) ≡ ∂1 − t59/1∂1 8∗

5(∂2) ≡ ∂2 − t59/2∂1 8∗
5(∂t ) ≡ ∂t − 59∂1.

The operator D5 := 8∗
5(∂t + 7) − ∂t is given by

D5 ≡ 7 + t5{e−2εψ1 [29/1∂
2
1 + 9/11∂1] + e−2εψ2 [29/2∂1∂2 + 9/22∂1]}

+t5ε{2ψ1/19∂2
1 + 2ψ2/19∂2

2 + 9/1(ψ2/1 − ψ1/1)∂1

−9(ψ2/11 − ψ1/11)∂1 + 9/2(ψ1/2 − ψ2/2)∂1 − 9(ψ1/12 − ψ2/12)∂2}.
The tensors E, G and E1 are therefore given by table 5.

Table 5. List of tensors needed to prove lemma 5.2.

D0 = 7 − 59∂1 ωD
1 ≡ 1

2 e2εψ159

G1,
11 ≡ e−2εψ1 259/1 + 2εψ1/159 ωD

2 ≡ 0

G1,
22 ≡ 2εψ2/159 G1,

12 ≡ e−2εψ259/2

E ≡ − 1
259/1 − 1

2 ε(ψ1/1 + ψ2/1)59 E1 ≡ 0

To compute F , we must express partial differentiation in terms of covariant differentiation.
Since ω is linear in 5, it plays no role. The Christoffel symbols of the metric, however, play a
crucial role. We compute

G1,
11f;11 ≡ (G1,

11∂2
1 − 259/1εψ1/1∂1 + 259/1εψ1/2∂2)f

2G1,
12f;12 ≡ (2G1,

12∂1∂2 − 259/2εψ1/2∂1 − 259/2εψ2/1∂2)f

G1,
22f;22 ≡ G1,

22∂2
2f.

We use this computation to determine the tensor F1

F1,
1 ≡ 5(e−2εψ19/11 + e−2εψ29/22) + ε5{(ψ2/1 − ψ1/1)9/1 − (ψ2/11 − ψ1/11)9

+(ψ1/2 − ψ2/2)9/2 + 2ψ1/19/1 + 2ψ1/29/2}
F1,

2 ≡ ε5{−(ψ1/12 − ψ2/12)9 − 2ψ1/29/1 + 2ψ2/19/2}.
We now prove assertion (a). Let P ∈ int(M). Let εψ1(P ) = εψ2(P ) = 0. We study

monomials 9/111 and ψ2/1119 appearing in ∂
∂5

{aM4 (·)}|5=0. Let R = E or let R = Rijji . We
integrate by parts to define A[R] by the identity

− 1
12

∫
M

g−1∂1(gf9)R dνM = 1
360

∫
M

fA[R] dνM

then

− 1
2a

M
2 (g−1∂1(gf9),7) = (4π)−1 1

360

∫
M

fA[6E + Rijji] dνM.
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We have Rijji ≡ −2εψ2/11 + · · · . We compute

∂

∂5
{60E;ii}|5=0 ≡ −309/111 − 30εψ2/1119 + · · ·

∂

∂5
{60F1,i;i}|5=0 ≡ 609/111 − 60εψ2/1119 + · · ·

∂

∂5
{c9G1,ii;jj }|5=0 ≡ 2c99/111 + 2c9εψ2/1119 + · · ·

∂

∂5
{c10G1,ij ;ij }|5=0 ≡ 2c109/111 + 0c10εψ2/1119 + · · ·

A[6E] ≡ 09/111 + 0εψ2/1119 + · · ·
A[Rijji] ≡ 09/111 − 60εψ2/1119 + · · · .

We use lemma 5.1 to relate the coefficients of f9/111 and fψ2/1119 and establish the
following relationships from which assertion (a) follows:

−30 + 60 + 2c9 + 2c10 = 0 and −30 − 60 + 2c9 = −60.

We now study the boundary terms. We pull back the Robin boundary operator

8∗
5(e

−εψ2∂2 + S) ≡ e−εψ2/1t59{B − e−εψ2 t59/2∂1 + t59(Sεψ2/1 + S/1)}
to determine the tensors

T 1 ≡ −e−εψ259/2 and S1 ≡ 59(εψ2/1S + S/1).

We have L11 ≡ −εψ1/2. We study the terms comprising ∂
∂5

{a∂M4 (f,D5,B5)}|5=0. At the point
of the boundary in question, we suppose εψ1(P ) = εψ2(P ) = 0.

∂

∂5
{(−120−, 240+)fE;m}|5=0 ≡ (60−,−120+)f {9/12 + (εψ1/12 + εψ2/12)9

+(εψ1/1 + εψ2/1)9/2}
∂

∂5
{120fELaa}|5=0 ≡ 60εfψ1/29/1

∂

∂5
{720f SE}|5=0 ≡ −360f S{91 + ε(ψ1/1 + ψ2/1)9}

∂

∂5
{e±

3 fG1,aaLbb}|5=0 ≡ e±
3 f (29/1)(−εψ1/2)

∂

∂5
{e±

4 fG1,mmLbb}|5=0 ≡ 0

∂

∂5
{e±

5 fG1,abLab}|5=0 ≡ e±
5 f (29/1)(−εψ1/2)

∂

∂5
{e±

6 fG1,mm;m}|5=0 ≡ e±
6 f (2εψ2/129 + 4εψ2/19/2)

∂

∂5
{e±

7 fG1,aa;m}|5=0 ≡ e±
7 f {29/12 + 2εψ1/129 + 2εψ1/19/2 − 2εψ2/19/2}

∂

∂5
{e±

8 fG1,am;a}|5=0 ≡ e±
8 f {−εψ2/19/2 + 9/12 + εψ1/19/2 − 2εψ1/29/1}
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∂

∂5
{e±

9 fF1,m}|5=0 ≡ e±
9 f {−(εψ1/12 − εψ2/12)9 − 2εψ1/29/1 + 2εψ2/19/2}

∂

∂5
{e+

12f SG1,aa}|5=0 ≡ e+
12f {29/1S + 2εψ1/19S}

∂

∂5
{e+

13f SG1,mm}|5=0 ≡ e+
13f {2εψ2/19S}

∂

∂5
{e+

14f S1}|5=0 ≡ e+
14f9{εψ2/1S + S/1}

∂

∂5
{e+

15f Ta:a}|5=0 ≡ e+
15f (εψ2/19/2 − 9/12 − εψ1/19/2)

∂

∂5
{(±180)f;mE}|5=0 ≡ ∓90f;m{9/1 + (εψ1/1 + εψ2/1)9}

∂

∂5
{e±

10f;mG1,aa}|5=0 ≡ e±
10f;m(29/1 + 2εψ1/19)

∂

∂5
{e±

11f;mG1,mm}|5=0 ≡ e±
11f;m2εψ2/19.

We must also study the boundary terms comprising − 1
2a

∂M
2 (·). As when studying aM2 , we

integrate by parts to define A and compute

A[2fLaa] ≡ −60εfψ1/129

A[12f S] ≡ −360{9εf Sψ2/1 − f9S/1}
A[±3f;m] ≡ ∓90{(εψ1/12 + εψ2/12)f9 + 2εψ2/1(f;m9 + f9/2)}.

We established the following relations in lemmas 3.2 and 4.2:

e±
3 = 30 e±

4 + e±
5 = −30 e+

14 − 2e+
9 = 60 and e−

9 = −30.

We use lemma 5.1 to derive the equations shown in table 6 and complete the proof. �

Table 6. Equations for the constants e±
i .

(60−,−120+) + 4e±
6 − 2e±

7 − e±
8 + 2e±

9 + e±
15 = ∓180 [f εψ2/19/2]

(60−,−120+) + 2e±
6 + e±

9 = ∓90 [f εψ2/129]

(60−,−120+) + 2e±
7 − e±

9 = −60 ∓ 90 [f εψ1/129]

(60−,−120+) + 2e±
7 + e±

8 − e±
15 = 0 [f9/12]

−2e±
5 − 2e±

8 − 2e±
9 = 0 [f εψ1/29/1] e+

14 = 360 [f S/19]

−360 + 2e+
13 + e+

14 = −360 [f εψ2/19S] −360 + 2e+
12 = 0 [f9/1S]

∓90 + 2e±
11 = ∓180 [f;mεψ2/19] ∓90 + 2e±

10 = 0 [f;m9/1]

6. Commuting operators

We conclude this paper by deriving a final functorial property. The equations which can be
derived using this property are compatible with the values for the constants ci and e±

i computed
previously; they are omitted in the interests of brevity.
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Lemma 6.1. Let D be a self-adjoint static operator of Laplace type and let B be a static
boundary condition. Let Q be an auxiliary self-adjoint static partial differential operator of
order at most two which commutes with D and with B. Then

∂

∂5
{an(f,D + 2t5Q,B)}|5=0 = ∂

∂5
{an−2(f,D + 5Q,B)}|5=0.

Remark. If we take D = Q, then D(5) = (1 + 2t5)D. By lemma 3.1,

∂

∂5
{a4(f, (1 + 2t5)D,B)}|5=0 = 2 − m

2
a2(f,D,B).

On the other hand, clearly an(f, (1 + 5)D,B) = (1 + 5)(n−m)/2an(f,D,B). Thus we may
show that lemma 6.1 is compatible with lemma 3.1 in this special case by computing

∂

∂5
{a2(f, (1 + 5)D,B)}|5=0 = 2 − m

2
a2(f,D,B) = ∂

∂5
{a4(f,D + 2t5D,B)}|5=0.

Proof. Let K1(t) := (1 − t25Q)e−tDB . Then K1(0) is the identity operator and

(∂t + D + 2t5Q)(1 − t25Q)e−tDB = {−2t5Q − (1 − t25Q)D + D(1 − t25Q)

+2t5Q(1 − t25Q)}e−tDB

= −2t352Q2e−tDB .

There exists a constant C and an integer µ such that we have the estimate in a suitable operator
norm:

|−2t352Q2e−tDB | � Ct−µ52.

Thus since we are interested in the linear terms in 5, we may replace the fundamental solution
of the heat equation K(t) for D + 2t5Q by the approximation (1 − 5t2Q)e−tDB . There is an
asymptotic expansion of the form [4]

TrL2(fQe−tDB ) ∼
∑
n�0

t (n−m−2)/2an(f,Q,D,B).

We equate coefficients of t (n−m)/2 in the asymptotic expansions to see

∂

∂5
{an(f,D + 2t5Q,B)}|5=0 = −an−2(f,Q,D,B).

Since Q and D commute and since Q and B commute, we complete the proof by computing
∑
n�0

∂

∂5
{an(f,D + 5Q,B)}|5=0t

(n−m)/2 ∼ ∂

∂5
{TrL2(f e−t ((D+5Q)B))}|5=0

= TrL2(−tfQe−tDB ) ∼ −
∑
n�0

an(f,Q,D,B)t (n−m)/2

so
∂

∂5
{an(f,D + 5Q,B)}|5=0 = −an(f,Q,D,B). �
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